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Vortex scattering by step topography
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The scattering at a rectilinear step change in depth of a shallow-water vortex pair
consisting of two patches of equal but opposite-signed vorticity is studied. Using
the constants of motion, an explicit relationship is derived relating the angle of
incidence to the refracted angle after crossing. A pair colliding with a step from deep
water crosses the escarpment and subsequently propagates in shallow water refracted
towards the normal to the escarpment. A pair colliding with a step from shallow
water either crosses and propagates in deep water refracted away from the normal or,
does not cross the step and is instead totally internally reflected by the escarpment.
For large depth changes, numerical computations show that the coherence of the
vortex pair is lost on encountering the escarpment.

1. Introduction
The ubiquity of vortices in the surf-zone has been revealed by several numerical

and observational studies. Peregrine (1998) shows that vortices frequently ‘pair-up’,
forming dipoles which subsequently propagate for significant periods. It has been
shown (Gorshkov, Ostrovsky & Soustova 2000) that dipoles are robust vortical
distributions, able to survive for many rotation periods. The durability of dipoles in
the surf zone has been demonstrated numerically by Özkan-Haller & Kirby (1999),
Slinn et al. (1998), Chen et al. (1999), Bühler & Jacobson (2001), and through field
observations by Smith & Largier (1995).

There is evidence that surf-zone vortices are likely to be significantly affected by
beach morphology. Richardson (2000) finds, in the limit of small radii compared
to typical vortex separation and to the length scale for variations in depth, that
monopolar vortices move along isobaths at a speed proportional to the logarithm of
the depth gradient. Bühler & Jacobson (2001) present a theoretical and numerical
study for waves and vortices in a shallow-water model with bottom topography. The
evolution of dipole structures in the surf-zone is studied using a simple method to
represent the effect of a sloping beach and invoking the conservation of potential
vorticity. It is found that dipole separation decreases on moving into deeper water,
and increases on moving into shallower water.

Perhaps the simplest choice of beach topography is the rectilinear step. Johnson
& McDonald (2004) consider two-dimensional finite-area uniform vortex patches
(with equal and opposite circulation) normally incident on a rectilinear step of
arbitrary height. They show that a vortex pair starting in relatively deep water,
crosses the escarpment and translates in relatively shallow water with increased
centroid separation. The change in centroid separation is a consequence of the strong
interaction between the vortex and its oppositely signed image (in the step topography)
as the pair approaches the escarpment. Similarly, a pair starting in shallow water,
crosses the escarpment and subsequently translates in deep water with decreased
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Figure 1. Sketch of a vortex pair crossing a step (along y = 0, indicated by the dashed line).
The subscripts i and t denote the quantities before and after crossing the step, i.e. ‘incident’
and ‘transmitted’. The centroid separation is denoted r with the normal angle to the step θ .

centroid separation. In this case, the vortex is influenced by a like-signed image in the
step.

The present work considers a vortex pair translating at an arbitrary angle of
incidence to the step (figure 1). Attention is confined to the scattering of two equal-
area, two-dimensional finite-area vortex patches with opposite sign by a rectilinear
step. The conservation of energy, circulation, volume and linear impulse determines
the trajectory of the pair after a collision with the escarpment, provided there is
minimal shedding and the shape of each patch remains close to circular.

A pair crossing from deep to shallow water is refracted towards the normal, and
similarly a pair translating from shallow water to deep water refracts away from the
normal. Hence, it is expected there exists a critical angle for a pair crossing from
shallow to deep water in which the refracted trajectory on the deep side is parallel to
the step. For angles of incidence greater than this critical angle, the pair no longer
crosses the step and is instead reflected by the step. This scattering behaviour of
vortex pairs is analogous to light undergoing total internal reflection when incident
upon a medium of lower refractive index.

Section 2 outlines the mathematical formulation of the problem and derives an
explicit relationship determining the angle of reflection given the initial separation
of the pair, the angle of incidence and the size of the vortex patches comprising the
pair. In § 3, the evolution of such pairs is computed numerically using an adapted
contour surgery algorithm based on Dritschel (1988), for various angles of incidence
from both shallow and deep water. These computation results are then compared to
that predicted by the relationship of § 2. Section 4 presents conclusions.

2. Analytical formulation
The two-dimensional flow of a shallow inviscid fluid with a rigid lid above finite-

height topography is governed by the conservation of potential vorticity, q = ω/H ,

qt + u · ∇q = 0, (2.1)

where H is the local fluid depth and ω = vx − uy is the vertical component of the
vorticity. The total kinetic energy, E,

E =

∫
ψω dx dy, (2.2)
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is a constant of the motion and ψ is a volume flux streamfunction giving velocity
components (u, v) = H −1(−ψy, ψx). Here and below, ω is taken to decay sufficiently
rapidly at infinity to give convergent integrals. For topography that varies in one
direction only (the y direction, say), the linear impulse

I =

∫
Y (y)ω dx dy, (2.3)

where Y (y) =
∫ y

H (y ′) dy ′ gives a second constant of the motion (Johnson, Hinds
& McDonald 2005). This paper considers vortex pairs consisting of two finite-area
equal-volume patches of oppositely signed uniform vorticity, where the volume

V =

∫
H (y) dx dy, (2.4)

of each patch (with the integral taken over the support of either patch) remains
constant by mass conservation, giving a third constant of motion. Conservation of q

and V together imply the circulations ±Γ of the patches are individually conserved,
where

Γ =

∫
ω dx dy > 0, (2.5)

with the integral taken over the positively signed patch only.
The energy of a vortex pair consisting of circular patches of uniform vorticity,

centred at (x1, y1) and (x2, y2) near a finite escarpment with depth H+ in y > 0 and
H − in y < 0 when the pair translates in deeper water is (Johnson & McDonald 2004)

E =
Γ 2H+

2π

{
log

(
r

a

∣∣∣∣2(y1y2)
1/2

r ′

∣∣∣∣
α)

+
1

4

}
, (2.6)

where γ = H −/H+ is the depth ratio, α = (γ − 1)/(γ + 1) the image strength due
to the topography, a the patch radius, r the vortex pair centroid separation and
r ′ = [(x1 − x2)

2 + (y1 + y2)
2]1/2. The depth ratio lies in the range 0 � γ < ∞, so the

image strength satisfies −1 � α � 1. For a pair far from escarpment, the topographic
image terms are negligible, thus (y1y2)

1/2 ≈ y and r ′ ≈ 2y, where y is the normal
distance from the escarpment to the centre of vorticity of the vortex pair. Then the
energy of a pair in deep water (y > 0) is

E =
Γ 2H+

2π

(
log χ + 1

4

)
, (2.7)

for χ = r/a, the ratio of centroid separation to patch radius. Conservation of
circulation, with (2.7) and its equivalent form in y < 0 where H − replaces H+,
gives the relation between pair separation either side of the step

χt = χ
1/γ
i exp[(1/γ − 1)/4], (2.8)

where subscript i denotes a quantity incident on the step and t denotes the transmitted
quantity, assuming the pair has crossed the escarpment. For γ < 1 (i.e. a pair crossing
from deep to shallow water), the patch separation increases after crossing and for
γ > 1, the separation decreases. The vortices are assumed to remain circular after
crossing the step so the centroid separation must be at least twice the radius of the
vortices comprising the pair, i.e. χt � 2. For each χi , there is a sufficiently large
increase in depth for which χt = 2. This critical depth ratio γd > 1 (where subscript d
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Figure 2. The evolution regimes determined by the depth ratio γ and the initial vortex
separation χi . ‘Coherent pair’: a pair incident to a step will cross with the vortices in the pair
remaining coherent. ‘Debris’: where significant vortex shedding will occur upon crossing. The
dividing curve is the critical depth ratio γd , from (2.9).

denotes debris) follows from (2.8) as

γd =
log χi + 1/4

log 2 + 1/4
. (2.9)

For depth ratios larger than γd , the numerical integrations (in § 3 and Johnson
& McDonald 2004) show that the vortices are pulled so close together that they
shed vorticity. This region of parameter space is described here as the debris region
(figure 2).

Constancy of V, from (2.4), gives 2H+πa2
i =2H −πa2

t , and so the incident and
transmitted radii are related by

ai =
√

γ at . (2.10)

Conservation of linear impulse, I, gives

I = Γ H+(−y1i + y2i) = Γ H −(−y1t + y2t ), (2.11)

relating the vortex separation perpendicular to the step before and after crossing. In
terms of the quantities ri,t and θi,t defined in figure 1, (2.11) becomes

ri sin θi = γ rt sin θt . (2.12)

Combining (2.8), (2.10) and (2.12),

sin θi

sin θt

= χ
1/γ −1
i

√
γ exp [(1/γ − 1)/4], (2.13)

an explicit relation between the incident and transmitted angles in terms of the
depth ratio γ and the incident vortex separation χi . It follows immediately from
(2.13) that there is a depth ratio, γmax , where the refracted angle after crossing is a
maximum, γmax =2(log χi + 1/4). Since γmax > γd , a pair crossing from shallow water
to deep water at any incident angle cannot reach its maximum refracted angle and
importantly never refracts towards the normal as this region of parameter space lies
in the debris region.

Figure 3 shows the transmitted angle θt as a function of the depth ratio γ for fixed
incident angle, θi and incident vortex separation, χi . The depth ratio γ lies in the
range 0 � γ < ∞ corresponding to a pair incident on a wall (γ = 0) and a pair incident
on a infinitely deep drop-off (γ → ∞). If γ < 1 (so that the pair crosses into relatively
shallow water), the pair is refracted towards the normal of the topography (i.e. θt < θi).
As γ → 0 (so that the topography becomes more ‘wall-like’), θt → 0 for all non-zero
θi . In this limit, the vortices forming the pair separate as they approach the step. They
subsequently propagate far along the wall as monopoles before crossing where they
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Figure 3. The refracted angle (in units of π), θt as a function of depth ratio γ for vortex
separation χ = 7.5 at varying angles of incidence θi , (a) θi = π/4, (b) θi = π/8, (c) θi = 0.119π,
(d) θi = π/16, (e) θi = π/32. The short dashed line is where the step is absent, γ = 1 and θi = θt .
The line γ = γd is shown long-dashed with the debris region, γ >γd hatched. Solid marks show
the range of depth ratios where the incident pair can be totally internally reflected.

translate with large separation almost perpendicularly away from the escarpment in
shallow water (cf. Johnson & McDonald 2004). When γ > 1 (so the pair would cross
from shallow water into relatively deep water), an incident pair would be refracted
away from the normal (as could be deduced from time reversal with the results just
noted). However, for certain incident angles, the transmitted angle can be equal to
π/2. This corresponds to the pair translating parallel to the step after it has crossed.
Let this critical incident angle be θc, so

sin θc = χ
1/γ −1
i

√
γ exp[(1/γ − 1)/4]. (2.14)

For incident angles greater than θc, with all other parameters fixed, the vortex pair
undergoes total internal reflection (TIR): it does not cross the step, but is instead
reflected and translates away from the step at its incident angle. Total internal
reflection here is analogous to Snell’s law for refraction of a light ray as it enters a
medium with a different refractive index. The angle of incidence (measured relative
to the normal to the interface) decreases when light passes into a medium of higher
refractive index and increases passing into a medium of lower refractive index, with
deeper water corresponding to a lower refractive index in the present work. It has
been established that a pair crossing the step with depth ratio greater than γd , given
by (2.9), will shed vorticity as it crosses the step. This debris region is cross-hatched in
figure 3 and here the pair does not have a well-defined transmitted angle. However,
for γ >γd , the pair can still undergo TIR, as on curve (b) in figure 3. Here there
is a range of depth ratios, γ (delimited by solid squares in figure 3) where a pair
undergoes TIR and remains coherent despite lying inside the debris region. Similarly
for curve (a) in figure 3, solid diamonds mark out where a pair with incident angle
θi = π/4 will perform total internal reflection. For larger depth ratios, a translating
pair could exist in the debris region, reflecting without shedding. However, for depth
ratios greater than the right-hand diamond, an incident pair is unable to undergo
reflection and instead crosses the step and, being in the debris region, undergoes
significant vortex shedding.



500 A. K. Hinds, E. R. Johnson and N. R. McDonald

iii iii
0.5

0.4

0.3

θt

θi

0.2

0.1

0 0.1 0.2 0.3 0.4 0.5

Figure 4. The refracted angle, θt as a function of incident angle, θi (both in units of π) with
incident separation χi = 3 for different depth ratios, (i) γ = 1.3, (ii) γ = 1.2, (iii) γ = 1.1. The
dash-dotted line shows where θt = θi , or γ = 1. The marked region shows the debris regime for
values of γ between γd , shown by a long dashed line, up to γmax shown with a dotted line. The
shaded region shows where a pair may undergo TIR if the depth ratio is sufficiently large.
In the cross-hatched region, the pair always crosses the step shedding vorticity. The contours
below the dash-dotted line are the reciprocals of the contours for γ > 1.

Figure 4 shows the transmitted angle, θt as a function of incident angle, θi with
incident separation χi = 3 for different depth ratios. The dash-dotted line shows where
θt = θi and γ =1 when there is no change of depth. The marked region on each figure
shows the debris region for depth ratios up to γmax , shown with a dotted line, which
is the value of γ where the largest θt occurs for a given θi . This region is split into
two further regions. In the shaded region shedding occurs unless the depth ratio is
large enough so that θi > θc and the pair undergoes TIR. In the cross-hatched region,
the pair crosses leading to vortex shedding.

3. Numerical computation of vortex-pair scattering
The instantaneous velocity field for a given vorticity distribution ω follows from

inverting

−∇ · (H −1∇ψ) = ω, (3.1)

to obtain the streamfunction ψ . For piecewise constant ω, contour surgery (Dritschel
1988) gives a particularly accurate and efficient numerical algorithm for this inversion,
allowing contours of potential vorticity to split and merge as dictated by the flow and
removing filaments which form during the integrations provided they are dynamically
insignificant. Details of the specific algorithm used here, which takes into account
finite-height topography and the possibility of a vortex straddling the escarpment can
be found in Johnson & McDonald (2004) and Johnson et al. (2005). The computations
here use a resolution with, on average, 150 nodes around a vortex patch (of unit
radius), initialized sufficiently far from the step that the effect of the partial images
owing to the topography is small (here r ′/2y � 1, cf. (2.7)). The total decrease in
vortex patch volume through surgery is less than 1% unless stated.
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Figure 5. Comparison between analytical and numerical results for a vortex patch pair
colliding with a step. The transmitted angle θt is given as a function of the incident angle θi

(in units of π) over a step which doubles in depth, γ = 2 and an initial separation χi = 20. The
solid line shows where the pair is refracted and the long dashed line shows where the pair
undergoes TIR. Vertical dotted lines show where θi = θc . Each marked point plots the incident
and refractive angles for a single computation with asterisks showing where shedding is � 1%
of the pair’s volume, and diamonds showing where vortex shedding is � 1%.

3.1. Refraction at step topography

Figure 5 compares the theoretical prediction (2.13) for θt with numerical results for a
vortex pair colliding with a step for various incident angles θi for χi = 20 and γ = 2.
The solid line is that predicted by (2.13) for a pair being refracted as they cross the
step and the dashed line shows where the pair is reflected, i.e. θi > θc. The marked
data points give the incident and refracted angles for a given numerical computation.
The agreement between the theoretical and computational angles is remarkable when
shedding is negligible (� 1% of the pair volume), as indicated by an asterisk. In this
case, there is only a brief time where each vortex of the pair straddles the escarpment,
where shedding occurs. Diamonds show where shedding is more significant (� 1%,
but still small compared with the size of the vortex). Here, vortices spend more time
over the step, more vorticity is shed and the agreement, although not as close as
for the non-shedding case, is still excellent. Figure 6(a) shows centroid paths for
each patch of a pair propagating from deep to shallow water with γ = 1/2 and
(θi, θt ) = (0.222, 0.0162). The pair is refracted toward the normal after crossing the
escarpment into shallow water. As the pair crosses the step, the separation distance
between vortex centroids increases under the influence of the oppositely signed images
in the step. Figure 6(b) shows a pair propagating from shallow to deep water with
(θi, θt ) = (0.222, 0.684). In this case, the separation between vortex centroids decreases
under the influence of the same-signed images in the step, which now acts as an
‘anti-wall’ (Johnson & McDonald 2004).

3.2. The critical angle and total internal reflection

Figure 7 shows patch centroid trajectories for a vortex pair propagating from shallow
to deep water at the critical angle of incidence so the pair is refracted parallel to
the step. In the absence of vortex shedding, the pair would propagate parallel to
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Figure 6. Trajectories of patch centroid positions when a pair is refracted by step topography.
The initial conditions are the same for each computation, θi = 0.222, with arrows drawn here
and hereinafter at equal time intervals. (a) The depth halves and (initially in deep water) the
pair crosses the step and translates in shallow water with increased separation and θt =0.684.
(b) The depth doubles and the pair initially in shallow water crosses the step with decreased
separation and θt = 0.0162

100

80

60

40

20

0

–20
–300 –200 –100 0

Figure 7. Patch centroid trajectories for an incident vortex pair at the critical angle. Weak
vortex shedding at the step means one vortex is stronger than the other and the pair eventually
recrosses the escarpment, after propagating 300 radius lengths parallel to the step.

the step on the deep side. A small amount of vortex shedding as the pair crosses
the escarpment means that the vortices no longer have precisely equal and opposite
circulation. The path thus eventually curves back toward the escarpment and the
pair crosses back into shallow water. The effect is extremely small: the pair travels
nearly 300 radius lengths parallel to the step before it recrosses the escarpment.
A similar phenomenon called the Goos–Hähnchen effect occurs in optics: a light
beam undergoing TIR propagates a few wavelengths parallel to the interface between
different media before being reflected (Yeh 1998). Figure 8(a) shows a trajectory for
θi > θc, so the pair undergoes TIR. At no stage do the vortex patches straddle the
escarpment and so shedding is minimal. Figure 8(b) shows another case of TIR, but
with θi � θc, so that one of the vortex patches comprising the pair momentarily
straddles the escarpment. Since this vortex sheds some vorticity, the vortex pair is no
longer comprised of patches with equal and opposite circulation and subsequently
the pair ‘bounces’ along the escarpment.
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Figure 8. Trajectories of patch centroids for a vortex pair incident from shallow water.
(a) θi > θc , the angle of incidence is greater than the critical angle and the pair is reflected.
(b) θi ∼ θc , one vortex momentarily straddles the escarpment, shedding vorticity and the pair
is captured in relatively shallow water.

3.3. The debris region

Figure 9 gives an example where the depth ratio is greater than γd , so the trajectories
lie in the debris region. The incident angle is chosen so the pair neither reflects nor
crosses the escarpment coherently to translate away at a constant transmitted angle.
On approaching the step, the pair is forced closer together under the influence of the
partial images present from the step. The pair crosses the step and, since γ >γd so
χt < 2, the pair sheds vorticity leaving one patch with larger (in magnitude) circulation
than the other. The subsequent pair trajectory, figure 9(a), is almost circular and the
pair eventually recrosses the step and, in the shallow region, the pair follows a curved
path with much larger radius (figure 9b). The pair cross the step for the third time
into deeper water where, after more shedding, the paths follow tighter circular paths,
with a drift parallel to the escarpment.

4. Conclusions
The conservation of potential vorticity, energy, linear impulse and mass give an

explicit relation for the angle of refraction and separation of vortex centroids for a
vortex pair colliding with a rectilinear step, providing the vortex patches remain close
to circular.

A pair initially translating in deep water with depth ratio γ = H −/H+ < 1, always
crosses the escarpment and is refracted toward the normal to the step and cannot
undergo TIR. The evolution of a vortex pair initially in shallow water, γ > 1, depends
on the size of the angle of incidence θi compared to the critical angle θc which is
determined by the height of the escarpment and the initial separation of the pair (see
(2.14)). If θi < θc, the pair refracts away from the normal. If θi = θc, the pair translates
along the escarpment, and if θi > θc, the pair undergoes total internal reflection.
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Figure 9. Trajectories and the evolution of a vortex pair with initial separation χi = 7.5.
The large depth increase, γ = 2.5 > 2.4 = γd means the trajectory lies in the debris region.
(a) Crossing and recrossing, (b) the subsequent evolution over a much larger time.

If the depth ratio is greater than a critical value γd (determined from (2.9)) then
vorticity is shed by the patches when θi < θc, and subsequent paths are curved.

Numerical integrations of the full equations of motion supported the analysis with
results for the angle of refraction agreeing closely with predictions provided vortex
shedding was small. They also showed that for θi � θc, it is possible for the pair to
be captured at the escarpment and ‘bounce’ along the step.

The authors are indebted to Professor Dritschel for providing a copy of his
1988 contour surgery code which provided a basis for the computations. A. K.
H. acknowledges support from a UK Engineering and Physical Sciences Research
Council graduate training award.
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